

US Pixel Module Activities

Jessica Metcalfe *Argonne National Laboratory*

Overview

- Modules with RTI bump-bonding
- Cable production
- Dummy module
- FE 65nm chip

Overview

- The US (SLAC/UCSC) is validating RTI--a bump-bonding vendor in the US for pixel module production
- · Successfully completed nearly identical work for other projects
- 3 FEI4b wafers (LBNL)
- 2 sensor wafers from Micron (Liverpool and UCSC)
- · 50 μm x 50 μm pitch
- production will include
 - 12 single chip modules
 - 12 quad modules
- First modules were received end of April
 - issues were found
- Expect reworked modules end of May

RTI Modules

RTI modules arrived at SLAC 6 quads + 6 singles

From Chris Kenney, 4 single chip sensors:

RTI Modules

Summarized from Maurice Garcia-Sciveres:

- · 3 single chip modules were loaded at LBNL
- Analog injection test indicates lots of shorted pixels
 - · All 3 modules look qualitatively the same

ANALOG_TEST 3.
Module "SC1"

Occupancy mod 0 bin 0 chip 0

RTI Modules

- Several single-chip modules returned to RTI
- RTI is investigating the cause of the shorts
- Initially suspected an improperly performed plasma cleaning step
- After disassembling one module, it became apparent that the bumps are actually merged
- RTI has not had this occur before on SLAC projects or with other customers
- Attempting to reprocess the sensor wafer to decrease the effective bump diameter
- Should receive reworked parts back this month.

Quad Module Flex Redesign

Argonne redesign the quad module flex cable:

· Add a connector on the quad module flex cable to allow modules to be placed adjacent to each other

Updated concept:

Quad Flex Cable

- · Redesign finished, checked off by original designer, Ilya Tsurin (Liverpool)
- Ordered 30 cables for test production
 - Ready to distribute in ~3 weeks
 - · Plan to order ~100 more depending on demand

Quad Flex Pin-out

Current Layout:

Quad Flex Pin-out

-					
U	ın	۱_	\sim	11	+٠
Pi		_	v	u	ι.

Pin		Pin	
1	GNDA3	26	VDDD4
2	VDDA3	27	Data4+
3	GNDD3	28	Data4-
4	VDDD3	29	NTC-
5	Data3+	30	NTC+
6	Data3-	31	LV_IN
7	GNDA2	32	LV_IN
8	VDDA2	33	LV_IN
9	GNDD2	34	LV_IN
10	VDDD2	35	LV_OUT
11	Data2-	36	LV_OUT
12	Data2+	37	LV_OUT
13	GNDA1	38	LV_OUT
14	VDDA1	39	-
15	GNDD1	40	-
16	VDDD1	41	-
17	Data1-	42	HV_IN
18	Data1+	43	HV_IN
19	Command-	44	HV_IN
20	Command+	45	-
21	Clock-	46	-
22	Clock+	47	-
23	GNDA4	48	HV_OUT
24	VDDA4	49	HV_OUT
25	GNDD4	50	HV_OUT

Single chip flex

Single chip flexes are being produced by UCSC

- Order ready to go out in the next few days
- 10 days for fabrication and stuffing
- · Still need adapter card

Read-out system USBpix, RCE, etc.

Dummy Modules

Summarized from Chris Kenney:

- Mechanical dimensions similar to FE65
- Dummy sensor wafers provided by LBNL
- Dummy ASIC wafers had metal deposited, lithography, and etching by Julie Segal (SLAC)
- 72/75 wafers were successful
- Will be able to wire bond to dummy modules
- · Resistors on 'FE' are able to generate local heat
- 'snake' resistance is about 20 Ω for oxide wafers, 30 Ω non-oxide wafers (8 Ω target)
- Expect to complete end of June

- SLAC is bump-bonding FE65p modules
- LBNL supplied a set of FE65p IC chips
- KEK supplied a set of sensor chips from Hamamatsu
- UBM and bumps deposited (SLAC)
- First 4 modules have been flip-chip bonded
 - Expect about 10+ total

Summary

More US module related activities??

Please report in ~bi-weekly module meetings on Thursdays at 2 pm PT

Plans:

- Procure adapter cards for both flex designs
- Layout path for US effort moving toward the Pixel TDR

Backup